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1 Introduction

When modelling complex systems we are unavoidably faced with imperfect or
missing information, especially in the measurement and information sciences.
This may have several causes, but it is mainly due to

• Cost of obtaining and processing vast amounts of information,

• Inherent system complexity.

Probability theory is a conceptual and computational framework for reasoning
under uncertainty.

These notes discuss several issues of modelling using probabilities and tools
from graph theory. Probability theory acts as “glue” for linking different models
together. Graphical models are structured representations of systems. There is
a variety of formulations, each conveying different semantic aspects. More on
this after a short review of probability theory.

2 A Short Review of Probability Theory

• Probabilities: uncertainty regarding occurrence of (random) events

– Cox’s theorem [?]: probability is the only consistent, universal logic
framework for quantitatively reasoning under uncertainty,

– Probability theory as extended logic (Jaynes [?]).

2.1 Probability space

• Probability space (Ω, P ): describes our idea about uncertainty wrt a ran-
dom experiment:

– Sample space Ω of possible outcomes ωi, and

– A probability measure P : how likely an outcome is.

• A ∈ σ(Ω) is a collection of subsets of Ω: for A ∈ A:

– P (A) ≥ 0 and P (Ω) = 1

– Additive: for two disjoint events A, B, P (A ∩B) = P (A) + P (B).

• Conditional probability: “probability within a probability”

P (A|B) =
P (A ∩B)

P (B)
, P (B) 6= 0

• Random variables: functions from Ω to a range R (e.g. R or N, etc).

Can inversely define events:

R → Ω : A(x) = {ω ∈ Ω|P [x(ω)]},
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where P is a predicate (e.g. ‘x > 2’), and therefore act as “filters” of
certain experimental outcomes.

• Probability densities: are densities (of probability measures):

p(x) =
d

dx
P (A(x))|x, A(x) = {x′ ∈ [x, x+ dx]}, x ∈ R.

• Joint densities: pXY (xy) = p({ω : X(ω) = x ∧ Y (ω) = y})

2.2 Three simple rules:

1. Product rule: P (A ∩ B) = P (A|B)P (B). Generalise for N events: chain

rule p(∩N
i=1Ai) =

∏i−1
i′=1 P (Ai| ∩i

i′=1 Ai′), (i′ < i) (telescopic). Note:
important for reasoning in Bayesian networks.

2. Bayes’ rule: it is a recipe that tells us how to update our knowledge in the
presence of new information!

P (A|B) =
P (B|A)P (A)

P (B)
, P (B) 6= 0

P (A): prior (model!), P (B) data, P (A|B) posterior, P (B|A): likelihood
of the data under the model. Can be simply derived from the rule of
conditional probability.

3. Marginalisation: given a joint density pxy(xy) get the marginal density of
x or y, by summation: (“integrate out” the uncertainty in one variable):

px(x) =

∫

{y∈Y}

dy p(x, y)

This is everything that we need to know in order to perform probabilistic
modelling and inference.
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3 Probabilistic modelling

• Thinking in terms of systems of random variables, their relations, and
probabilities on them.

• This basically means working with conditional and/or joint distributions.

3.1 Probability Theory and Graph Theory

Graphical models: model structural relationships among random variables.
Independence: Recall: two RVs are independent, writeX ⊥⊥ Y , if pX|Y (x, y) = pX(x).

• Encode probabilistic (in-)dependence relations among random variables.

• Plausible inference requires some degree of “regularity” among the condi-
tional densities of RVs: for example, we need to encode knowledge of the
form:

– Symmetry: “If A is independent of B given C, then B is independent
of A given C”.

– “If A is independent of both B and D given C, then A must be
independent of B given both C and D.

We need to find a way of formally (and easily) encoding such relations. It turns
out that there is graph theoretic structure in sets of random variables, given
their probabilistic relations, given by the correspondence:

• Random variable v ∈ V ←→ vertex v ∈ V(G)

• Probabilistic dependence p(v, u), v, u ∈ V ←→ edge e(v, u) ∈ E(G),

where G = (V , E) is a graph with node–set V and edge–set E .
Given the semantics of edges (to be defined next), we can perform probabilis-

tic reasoning using graph theoretic concepts!

3.2 Modelling (In–)dependence

Conditional independence: two “aspects” of a system become independent
given a third part of the system: write X ⊥⊥ Y |Z:

X ⊥⊥ Y |Z ⇐⇒ p(X |Z) = P (X |Y ∩ Z)⇐⇒ p(X ∩ Y |Z) = p(X |Z)p(Y |Z).

“Knowledge of (or absence) Y does not influence our knowledge of X”.

• Systems decouple and joint pdfs factorise.

• Conditional (in-)dependence relationships between RVs can be immedi-
ately read off the graph, given the graph-theoretic properties of separation
and d–separation.
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Definition 1 (Markov property) (In time): “the future and the past are in-
dependent given the present”.

Can be generalised for spatial random variables.
Conditional independencies lead to efficient inference ( local computation).
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Figure 1: Undirected graphical probabilistic models: (a) Observation of the
value of the random variable C leads to the elimination of this node. (b) The
subset C of V is a vertex cut–set : if observed, it makes A and B conditionally
independent.

3.3 Undirected graphs (Markov random fields)

Markov random fields (MRFs) are undirected graphical structures on sets of
random variables. They combine ideas from probability theory and statistical
physics, especially when describing energies of many–particle systems seen as
random quantities. Examples include the Ising and Potts models, Boltzmann
Machines, etc. They have wide applications in image processing.

Definition 2 (Clique) Clique C ⊆ V: a fully connected component of a graph.

In order to define the joint probability on an undirected graph, we must first
define ‘interaction potential functions’ ψ on cliques C ∈ C; see next.

Definition 3 (Potential function) For our purposes, a clique potential, ψ(xC),
on a clique C ∈ C, is an arbitrary non–negative function of xC .

Rule for Independence: if there is no path between A and B, then the RVs
A and B are independent.

• When a variable is observed or known it is removed from the graph along
with all the edges connected to it.
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• Broken paths imply conditional independence: If Z1, . . . , ZK are removed
from the graph then X ⊥⊥ Y |{Z1, . . . , ZK} holds, i.e. X is separated from
Y by Z1, . . . , ZK .

3.3.1 Markovianity and Factorizability

Definition 4 (Markov property) Markov property: X is Markov wrt G if
XA and XB are conditionally independent given XC whenever C separates A
and B; see Fig. 3.3.

Definition 5 (Factorization property) Factorization property: A distribu-
tion p factorizes according to G if it can be expressed as a product over cliques.

Theorem 1 (The Hammersley–Clifford Theorem) For strictly positive p(·),
the Markov property and the Factorization property are equivalent.

This ensures that a product of positive functions on cliques of G is indeed an
MRF relative to G.

Definition 6 (Gibbs–Boltzmann distribution) A probability Q is a Gibbs
distribution for a graph G if it can be written in the form

Q(x) =
∏

c∈C

ψc(xc).

If, in addition, ψc(xc) > 0, ∀xc, we can set φc(xc) = − logψc(xc) and write
p(x) in exponential form:

p(x) =
1

Z
exp {−U(x)} =

1

Z
exp

{

−
∑

c∈C

φc(xc)

}

,

where U(x) is the ‘potential energy’ of the configuration x. This is the Boltz-
mann class of distributions.

Interpretation: values with lower energies are more probable.

3.3.2 Interpretation of clique potentials

In general, the individual potentials are ‘compatibility’ functions, but not prob-
ability distributions.

For example, for an MRF x −−− y −−− z, which implies x ⊥⊥ z|y, and
p(x, y, z) = p(z|y)p(x|y)p(y) we can have the factorisations:

p(x, y, z) = p(x, y)p(z|y) = ψ(x, y)ψ(y, z)

p(x, y, z) = p(z, y)p(x|y) = ψ(x, y)ψ(y, z)

Therefore, we cannot have all potentials be marginals or conditionals.

E. Roussos 7
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Figure 2: An example of a directed graphical model.

3.3.3 Markov random fields with discrete data

1. Assign a label, ωi, to each ‘site’, from a given set of labels {1, . . . ,K}.
2. Define a probability measure on the set of all possible ‘configurations’.

3. Markovian property: P (fi|fS\{i}) = P (fi|fN (i)).

4. Incorporate contextual constraints.

3.4 Directed graphs (Bayesian networks)

• The set V of random variables is a partially ordered set (poset).

• The joint probability of a set of random variables V , p(V), is defined on a
directed graphical structure G.

• Semantics: Edges in a graph represent ‘direct influence’. Note:

– Bayesian networks are not causal networks, but edges in BNs often
emanate from causes and terminate at effects.

– Bayesian networks do not need to be Bayesian only, i.e. use Bayesian
inference; frequentist statistics can be used as well.

• Ordering matters!: A −→ B 6= B −→ A

The structure of G defines the factorisation of p(V):

p(G) =
∏

v∈V(G)

p(v|pa(v)).

In Bayesian networks there is a simple one–to–one relationship with the factors
of the joint distribution of V .

On the graph of Fig. 3.4: p({X,Y, Z}) = p(Z|X,Y )p(X)p(Y ).

3.4.1 Blocked Paths and Activated Paths

Generic Rule for Independence: “X is independent of Y unless Z is given”.
Concepts:

• Marginal independence: X and Y are marginally independent.

• Conditional dependence: given Z, X and Y become dependent.

E. Roussos 8
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Figure 3: The Bayesian network representing the ‘alarm’ “knowledge–base”.
Variables: B: burglary, E: earthquake, A: alarm, J : Neighbour calls, R: Radio
anouncement.

Example: Alarm BN [Friedman and Goldszmidt] “I’m at work, my
neighbour calls to say my alarm is ringing. Sometimes the alarm is set off by
minor earthquakes. Is there a burglary?” [Fig. 3.4.1] .

For the alarm example,

p(V(G)) = p({E,B,A,R,N}) = p(E) · p(B) · p(A|E,B) · p(R|E) · p(N |A).

3.4.2 Assessing conditional independence via d–separation

An observation “blocks” a path between nodes: d–separation stands for directed
separation.

In a graphical model with nodes X,Y, Z1, . . . , Zk,

• d–separation helps us determine if X ⊥⊥ Y |{Z1, . . . , Zk} holds

• X and Y are d–separated if there is no active path between them.

There are four kinds of ‘primitive structures’:

Convergent: A −→ C ←− B: (A and B are the parents of C) Given C, A and
B become dependent, even if they are marginally indendent. Example:
{sprinkler, rain} −→ wet grass. A path gets activated in this case.

Convergent via another node, D: {A −→ D ←− B,D −→ C}:

Divergent: A←− C −→ B: (A and B are the children of C) Given C, A and
B become independent. C blocks the path between A and B.

Chain: A −→ C −→ B: B is independent of A given C. C blocks the path
between A and B.

All Bayesian networks are built using these building blocks.

E. Roussos 9
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4 Inference

In probabilistic models: we have a model, m, which is a functional that relates
a set of variables, V = {vi}, together:

m = F [{fk(σk(V))}k].

Some vi’s are observed (“instantiated”): X = {vj ∈ V|vj = oj}, and the rest,
Y = V \ X , are unobserved (“hiddent”, or “latent”). We can also have a set of
parameters θ.

Inference (state estimation):

• Given: a set of random variables {X1, . . . , XN} and their joint probability,
P (X1, . . . , XN ), i.e. a model,

• Compute: one or more conditional densities given some observations.

Examples:

• Given some measurements (images, range measurements, etc) and some
external orientation compute the three-dimensional shape of the human
body.

• Given a set of DEMs as a time-series compute the volumetric growth
and/or change in shape of an infant.

• Plan and estimate the precise position of an implant before/after surgery.

Notes:

• In graphical models, learning means computing the posterior distribution
of some variables given the ‘evidence’, i.e. the observed values of some
others.

Back to the ‘Alarm’ example: Fig. 3.4.1
Learning: posterior p(EBAR|N): using Bayes’ rule:

p(EBAR|N) =
P (EBARN)

P (N)

=
P (N |EBAR)× P (EBAR)

P (N)

=
P (N |A)× P (R|E)P (A|EB)P (E)P (B)

∑

ebar P (N |A)× P (R|E)P (A|EB)P (E)P (B)
.

4.1 Inference in Bayesian Networks

• BNs contain all the information needed for inference

• For the general case, it is NP-hard.
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Figure 4: General architecture of directed graphical models (Bayesian networks):
Observed X, latent variables Y, and parameters θ.

Several methods:

• Variable Elimination, Sum–Product

• Dynamic Programming

• Gradient Descent on the likelihood or posterior surface

• Stochastic simulation (Markov chain Monte Carlo, Vegas, etc)

• Approximate Inference

5 Expectation-Maximization

Expectation-Maximisation [Dempster, Laird & Rubin, 1977] is a generic strat-
egy for maximum likelihood or maximum a-posteriori estimation on probabilistic
models. Consider the generic graphical model shown in Fig. 5, with parameters
θ and observations Y.

• Estimate the parameters θ (and posterior statistics of the hidden variables
Y) in a graphical model.

• Interpretation as inference in the presence of ‘incomplete’ observations or
latent variables.

Recall: Likelihood function of the parameters given the data (‘under the
model’):

L(θ) = log[p(X|θ)].

• Directly computing this may be hard for complex models!

• In many cases the joint distribution of (X,Y) is much easier. This is
called the ‘complete-likelihood’.

Write
p(X,Y|θ) = p(X|Y,θ)p(Y|θ). (1)

E. Roussos 11
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5.1 The EM algorithm

• But we do not have the unobserved data! Let’s ‘integrate them out’.

E-step: Construct the average complete log likelihood wrt the posterior
over the hidden variables, Y:

Q
(

θ,θk
)

def
= E [log p(X,Y|θ)]pY|X

=

∫

Y

dY p(Y|X,θk−1) log[p(X|Y,θ)p(Y|θ)]

(2)
(Start from an initial value for the parameters, θ0.)

Note: compute posterior over Y via Bayes’ theorem,

p(Y|X,θk−1) =
p(X|Y,θk−1)p(Y)

∑

Y
p(X|Y,θk−1)p(Y)

.

Note: θk−1 is a fixed number, not a RV.

M-step: Next θ, at iteration k, is found by maximizing Q
(

θ,θk
)

wrt

θ:
θk = arg max

θ

{

Q
(

θ,θk−1
)}

(3)

Algorithm 1 EM Algorithm

1: let k = 0, θ = θ0

2: E-step: Compute average from Eq. 2
3: M-step: Compute new parameters θk from Eq. 3
4: k ← k + 1;

IF(not converged) GOTO 2 ELSE θ̂ ← θk, exit ENDIF

Notes on the EM Algorithm:

• Guaranteed convergence properties! [DLR, 1977].

• We need to provide an explicit model (prior) for the non-observed vari-
ables, Y.

• From the EM algorithm we also get the posterior statistics of Y, besides
θ̂.

Generalised EM Original version uses true posterior over Y. We could have

used an approximate posterior q(Y). Then Q
(

θ,θk
)

would have been a lower

bound to the log-likelihood.

E. Roussos 12
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6 Markov random fields: Bayesian labelling

• MAP Estimate
f∗ = arg max

f∈F

p(f |d)

where F is the space of all possible MRFs, and d are the data.

• Mode of the posterior distribution.

• From Bayes’ theorem,

p(f |d) =
p(d|f)p(f)
p(d)

∝ p(d|f)p(f)

• We have:

– Prior p(f): MRF energy U(f)

– Likelihood p(d|f): Noise model

• Posterior energy: U(f |d) + U(f)

• This is an Energy Minimization problem

6.1 Gibbs Sampler and Simulated Annealing

• Näıve calculation would lead to ‘combinatorial explosion’: we cannot visit
all points x in the configuration space Ω = {1, . . . ,K}N , where N is the
number of pixels.

• Stochastic Relaxation

Randomly visit the configuration set Ω long enough according to the dis-
tribution PX.

Replace each point i with a sample from its conditional distribution:

p (xi|{xi′}i′ 6=i) = p
(

xi|xN (i)

)

• As t → ∞, the “histogram” (distribution) tends to the “true” (‘station-
ary’) distribution h(x)→ p(x|d).

6.1.1 Gaussian MRFs

A useful class of MRFs on f = [fi], i = 1, . . . , N , are Gaussian MRFs. Their
density function is

p(f) =
1

√

(2πσ2)N
√

detB
exp

{

− 1

2σ2
(f − µ)TB(f − µ)

}

.

The matrix B = [bii′ ] is the interaction matrix (between pixels in an image),
with bii′ = δii′ − βii′ and βii = 0.
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7 Applications

7.1 Learning Gaussian Mixture Densities from Data

7.2 Image Segmentation
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