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ISPRS Intl. Summer S
h. Advan
es in Medi
al Imaging1 Introdu
tionWavelets are mathemati
al magnifying lenses: wavelet analysis is a tool for thehierar
hi
al de
omposition of fun
tions. They integrate 
on
epts from variouss
ienti�
 �elds, like fun
tional analysis, signal pro
essing, statisti
s, et
.; seeFig. 1
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Figure 1: Wavelets analysis and allied �elds.2 Signals and Representions2.1 Signals as fun
tions and ve
tors
• Signals 
an be modelled as fun
tions, f : Ω → X , from the time� or spa
e�domain to the spa
e of amplitudes of the signal. Digital signals are from
⊗ = I = {(i1, . . . , id)} ⊆ N

d, the spa
e of d�tuples of integer indi
es (forexample, d = 2 for images), to X ⊆ R.
• Fun
tions 
an be thought of as ve
tors in a very high�dimensional spa
e.Intuitively, we 
an understand this by dis
retising a fun
tion f with sam-pling interval ∆t (Fig. 2.1), and letting ∆t→ 0.2.2 Domains, representations, and transformsPhysi
al, frequen
y, and wavelet domains.
• The physi
al (time� or spa
e�) domain representation expresses a fun
tion
f on Ω ⊆ R

d as a 
ombination of an impulse-train of Dira
 δ�fun
tions1 at1Stri
tly speaking, it should be 
alled a `distribution'.E. Roussos 2
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f_i = f(t_i)

t
T

Dt

f

t_i0Figure 2: Sampling a 
ontinuous fun
tion f with sampling interval ∆t.time-points ti = i∆t for timeseries, spatial positions (xi, yj) = (i∆x, j∆y)for images, et
; using ri as a generi
 index,
f(r) =

∑

i

fiδ(r − ri) =
∑

i

f(ri)δ(r − ri), r ∈ Ω ⊆ R
d, ri = i∆r.We 
an think of δ�fun
tion as �pi
king� the value of a fun
tion at ea
h

ri. The dis
rete equivalent is using the 
anoni
al basis, {ei}i, ei =
(. . . , 0, . . . , 0, 1, 0, . . . , 0, . . .), with a 1 at position i.

• More generally, we 
an represent a signal as a sum (or integral) of bases,
{bk}:

f(r) =
∑

k

ckbk(r), r ∈ Ω ⊆ R
d, (1)where d is the dimension of our spa
e, for example d = 2 for images.`Choosing a representation' means expressing our signal in a 
ertain basis.The bases are �prototypi
al signals�, in a sense, and their amplitude is�modulated� by their 
orresponding 
oe�
ient.

• In a frequen
y domain (Fourier) representation, the basis fun
tions aresinusoids, or 
omplex exponentials, {eιωt}ω, ι def
=

√
−1:

f(t) =
1

2π

∫

dωf̂(ω)eιωt,where ω is the frequen
y; the representation is f(t) 7−→ f̂(ω), from t�spa
eto ω�spa
e. The Fourier domain is therefore useful for representing thefrequen
y 
ontent of a signal.
• Fourier bases are perfe
tly lo
alised w.r.t. frequen
y, ω, but their sup-port2 is the whole real axis, (−∞,∞): they are not lo
alised in physi
alspa
e. This means that we 
annot tell when a parti
ular `frequen
y event'happened.2`Support' is the part of the domain of a fun
tion in whi
h it is non�zero.E. Roussos 3
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b2Figure 3: A 3-frame {b1,b2,b3} in 2-D spa
e, (x, y).
• Wavelets are basis fun
tions that span the spa
e of signals with �niteenergy3, therefore they 
an represent any fun
tion in this spa
e.2.2.1 From bases to frames
• We 
an represent a ve
tor with more �bases� than the dimensionality ofthe ve
tor spa
e itself (under some 
onditions): see Fig. 2.2.1.
• This is 
alled an over
omplete representation, and it is very useful in many
ontexts. The elements of a frame are generi
ally 
alled `atoms'.2.2.2 Lo
alised BasesProperties of lo
alised bases bases: �
hop up� signals into small pie
es. Heisen-berg boxes.
• If we 
ombine a Fourier basis eιωt with a window g(t) that has �nitesupport, we 
ut o� the part of the signal outside the window.
• By shifting the window, in physi
al spa
e, by u, we get a family of atoms
{gu,ω}:

gu,ω(t)
def
= eιωtg(t− u).

• This leads to the windowed� or short�time Fourier Transform (STFT),
f(t) 7−→ f̃(u, ω):̃

f(u, ω) = 〈f, gu,ω〉 =

∫

dtf(t)g(t− u)e−ιωt,where 〈·〉 is the inner produ
t.3We 
an de�ne the energy of a fun
tion by 1

2

R

2π

0
dx |f(x)|2.

E. Roussos 4
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al Imaging2.2.3 Time�frequen
y Tiling
• We say that the atoms `tile' the time�frequen
y spa
e.� We 
an visualise this by ploting the result of the transform in (u, ω)�spa
e. The support of an atom lo
alised at (u, ω) is

σt × σω =
[

u− σt

2
, u+

σt

2

]

×
[

ω − σω

2
, ω +

σω

2

]

;these are 
alled `Heisenberg boxes': they represent the un
ertainty, ortrade�o�, w.r.t. pre
ise lo
alisation in spa
e versus frequen
y 
ontent.� The Heisenberg boxes of δ fun
tions are stripes with perfe
t lo
alisa-tion on the time axis, t, but in�nite support on the frequan
y axis.� Fourier bases have the exa
tly oposite representation: perfe
t lo
al-isation on the frequen
y axis, ω, but zero �resolution� on the timeaxis.� STFT�tiles are identi
al parallelograms, σt ×σω, shifted in time andspa
e in order to 
over the time�frequen
y plane.
• Wavelets are another kind of lo
alised bases with very interesting proper-ties, whi
h attempt to balan
e time� and frequen
y�lo
alisation; see next.

E. Roussos 5
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al Imaging3 Wavelets3.1 General properties
• Wavelets are fun
tions that satisfy 
ertain requirements:� They integrate to zero: this property makes them `wave�s',� They are well lo
alised in spa
e, i.e. they have `
ompa
t support'(`�lets').
• Wavelets also form families of �self-similar� atoms, in the sense that newatoms 
an be formed by the dilation and translation of a basi
 �template�,so�
alled �mother�, wavelet.

Figure 4: Members of the Daube
hies 
lass of wavelets [?℄: from left�to�right,D2, D4, D8, D10. Ea
h one 
an form a whole family of bases.
• The 
on
ept of s
ale: sin
e wavelet bases are lo
alised fun
tions, andthey 
an be formed by the dilation of a mother�wavelet, they naturallyin
orporate a notion of 
hara
teristi
 s
ale. Unlike Fourier bases, wherethe natural property is frequen
y, i.e. `number of os
illations per unitlength', wavelets 
an be (and usually are) 
onstru
ted su
h that they areidenti
ally zero outside a 
ertain range.
• Smoothness property: wavelets trade-o� lo
ality of support and smooth-ness: the less lo
alised they are, the smoother they be
ome.This is ne
essary, in order to have a mathemati
ally stable 
onstru
tion.E. Roussos 6
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al ImagingThese are extremely useful properties, sin
e they allow us to �zoom� on a 
ertainlevel of detail in the signal, and add more detail as needed.There are many di�erent types, depending on their other properties, likeorthogonality, smoothness, lo
ality of their support, their relation to equivalentdigital �lters, et
.; see Fig. 3.1.3.2 Wavelet transform: Continuous
• As mentioned above, we 
an 
onstru
t wavelets by translating and dilatinga mother wavelet:

ψs,τ (t) =
1√
s
ψ

(

t− τ

s

)

, (2)where the fa
tor 1/
√
s is for normalising the energy a
ross s
ales.

• The generi
 wavelet transform of a fun
tion, f(t) 7−→ w(s, τ) 
an then bewritten as
w(s, τ) =

〈

ψ∗

s,τ , f
〉

=

∫

dt ψ∗

s,τ (t)f(t), (3)where the star denotes 
omplex 
onjugation. This is an inner produ
t, or
orrelation, of our signal with the wavelet fun
tion. It is a measure of howmu
h the details of our signal at that parti
ular s
ale and position �looklike� our basis.
• By taking all translations τ and dilations s of the mother wavelet, ψ,we get a very detailed pi
ture of the information 
ontent of our signal,with respe
t to s
ale and spatial position. This is the 
ontinuous wavelettransform, CWT.
• A visual representation of the transform in (s, τ)�spa
e is 
alled a s
alo-gram.
• We 
an also perform the inverse operation, w(s, τ) 7−→ f(t), from waveletspa
e to physi
al spa
e, by

f(t) =

∫

dsdτ w(s, τ)ψs,τ (t). (4)3.3 Wavelet transform: Dis
reteThe Cohen�Daube
hies�Feauveau (CDF) ma
hinery (Fourier-based) for the 
on-stru
tion of wavelets.
• The CWT is a redundant transform: in order to re
onstru
t the originalsignal from {ws,τ} we do not need all dilations, s, and translations, τ .In fa
t, in many 
ases, for example in signal 
ompression, we do not wantto have all wavelet 
oe�
ients4.4Of 
ourse, in many others we do want to keep all the information.E. Roussos 7
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0 omega2omega1Figure 5: Wavelet spe
tra: a parti
ular wavelet basis ψjk spans a region [ω1, ω2]in the frequen
y domain. The s
aling fun
tion, φ, 
overs the lower end of thefrequen
y spe
trum.
• It turns out that we 
an �sparsify� our set of �samples� {(s, τ)} in Eq. 3 toonly a 
riti
al number of them {(sj , τk)}, and still be able to re
onstru
tthe original signal5. We only need to translate and dilate at dis
rete steps:

ψj,k(t) =
1√
s0j

ψ

(

t− kτ0s0
j

s0j

) (5)We 
an 
hoose s0 = 2, whi
h leads to dyadi
 sampling, i.e. sampling on alogarithmi
 grid of points {(sj , τk)} in position�s
ale spa
e.
• The dis
rete wavelet transform 
an therefore be written as

f(t) =
∑

j,k

wj,kψj,k(t), ∀j, k ∈ Z, t ∈ R
d. (6)3.3.1 The View from the Fourier Domain

• Note that wavelets are signals too; therefore they have a Fourier represen-tation.Now, re
alling the fa
t from Fourier analysis that 
ontra
tion (resp. di-lation) by a in the physi
al domain 
auses a dilation (resp. 
ontra
tion)by the same amount in the frequen
y domain, F [f(at)] = 1/|a| F [ω/a],
a ∈ R, and the fa
t that daughter�wavelets 
an be generated by s
alinga mother�wavelet, we see that Eq. 6 amounts to adding a set of waveletspe
tra in the Fourier domain, in order to 
apture the frequen
y 
ontentof f , as shown shemati
ally in Fig. 3.3.1.

• Returning to the tiling idea: wavelets tile the time�frequen
y spa
e byadaptively adjusting their width and height a

ording to Eq. 5.3.3.2 Multiresolution AnalysisMultiresolution Analysis (MRA) and Mallat's Pyramid Algorithm5Te
hni
ally: this redu
ed set still spans the spa
e of signals with �nite power.E. Roussos 8
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• From Fig. 3.3.1 we see that a wavelet fun
tion has a band-like spe
trum,spanning a region [ω1, ω2] in the frequen
y domain. Therefore, re
on-stru
ting a signal f using Eq. 6 
an be interpreted as �ltering with a setof band�pass �lters.
• Noti
e, though, that using this 
onstru
tion requires an in�nite 
ountable,in general, number of wavelet bases, sin
e |∆ω| → 0, ∆ω = ω2 −ω1, as wekeep dillating the wavelets6.Stéphane Mallat, [?℄, made the ingenious observation that one 
ould useanother fun
tion instead, the s
aling fun
tion, φ, with just the right fre-quen
y band. This then, 
ombined with our wavelets, {ψ} 
overs thewhole spe
trum of f . The a
tion of the s
aling fun
tion 
orresponds tolow�pass �ltering.
• Again, the s
aling fun
tion 
an be represented in the Fourier domain bya linear 
ombination of wavelet bases.3.3.3 The Fast Wavelet TransformSignal Pro
essing: Filters for the implementation of the WT. Two�s
ale rela-tions
• The remarkable thing is that the above analysis 
an be implemented ex-tremely e�
iently, via an algorithm with 
omputational 
ost O(n).
• A parti
ular wavelet family 
orresponds to, and is implemented with,a �lter�bank. In parti
ular, the original length�N signal is re
ursivelypassed through a pair of high�pass (G) and low�pass (H) �lters. Westore the result of G, whi
h is a sequen
e of N/2 wavelet 
oe�
ients, andkeep splitting and �ltering the low�passed portion ea
h time, until werea
h sequen
es of unit length; one stop the algorithm at a higher level,of 
ourse.
• The above `iterated �lter bank' is the pyramid algorithm. Mathemati
ally,it 
orresponds to set of relations between wavelets and s
aling 
oe�
ientsat two di�erent s
ales, j and j − 1.
• The above 
onstru
tion implements an analysis of a signal into severallevels of detail.

6Intutively, an �in�nitely small wavelet� would be �almost like� a Dira
 δ and its spe
trumwould 
over a very large region of the frequen
y domain. On the 
ontrary an �in�nitely largewavelet� would 
over a very small region ∆ω around a point ω0.E. Roussos 9
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al Imaging4 Wavelets for ImagesThe above dis
ussion, although quite generi
, did not spe
i�
ally fo
us on theissue of wavelets for two� or higher�dimensional signals.A digital image 
an be represented as a matrix A = [Aij ] ∈ R
N×N with`grey level' Aij at pixel (i, j).1. The appli
ation of the pyramid algorithm on an image 
an be done in`sub�bands': �rst the rows of A, {ai}i, are �ltered using H and G, givingtwo new matri
es HrA and GrA of dimensions N ×N/2.2. The same operation is performed on the 
olumns of ea
h of these twomatri
es giving four matri
es, HcHrA, GcHrA, HcGrA, and GcGrA,of dimension N/2 ×N/2.The matrix HcHrA 
ontains the low�pass �ltered image and the rest thehigh�pass �ltered ones.3. Store {GcHrA,HcGrA,GcGrA} and 
ontinue �ltering the low�pass im-age until we get a matrix of dimensions 1× 1, or stop at a higher node ofthe pyramid.The above algorithmi
 
onstru
tion 
orresponds to the appli
ation of thewavelet transform with two-dimensional wavelets that are tensor produ
ts ofone�dimensional ones.4.1 Appli
ations:I. Compression/Sparse Representation,II. Denoising.

E. Roussos 10


