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1 Introduction

Wawvelets are mathematical magnifying lenses: wavelet analysis is a tool for the
hierarchical decomposition of functions. They integrate concepts from various
scientific fields, like functional analysis, signal processing, statistics, etc.; see
Fig. 1
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Figure 1: Wavelets analysis and allied fields.

2 Signals and Representions

2.1 Signals as functions and vectors

e Signals can be modelled as functions, f : Q@ — X, from the time or space
domain to the space of amplitudes of the signal. Digital signals are from
®@ =1={(i1,...,iq)} € N? the space of d-tuples of integer indices (for
example, d = 2 for images), to X C R.

e Functions can be thought of as vectors in a very high—dimensional space.
Intuitively, we can understand this by discretising a function f with sam-
pling interval At (Fig. 2.1), and letting At — 0.

2.2 Domains, representations, and transforms

Physical, frequency, and wavelet domains.

e The physical (time or space ) domain representation expresses a function
fon Q C R? as a combination of an impulse-train of Dirac § functions! at

IStrictly speaking, it should be called a ‘distribution’.
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fi=f(Li)

Figure 2: Sampling a continuous function f with sampling interval At.

time-points t; = At for timeseries, spatial positions (x;,y;) = (iAz, jAy)
for images, etc; using r; as a generic index,

f(r) = Zfid(r —r;) = Zf(ri)é(r —r;), reQCR? r, =iAr.

We can think of § function as “picking” the value of a function at each
r;. The discrete equivalent is using the canonical basis, {e;};, e, =
(...,0,...,0,1,0,...,0,...), with a 1 at position s.

e More generally, we can represent a signal as a sum (or integral) of bases,
{bx}:
flr)=> abi(r), reQCRY (1)
k

where d is the dimension of our space, for example d = 2 for images.
‘Choosing a representation’ means expressing our signal in a certain basis.
The bases are “prototypical signals”, in a sense, and their amplitude is
“modulated” by their corresponding coefficient.

e In a frequency domain (Fourier) representation, the basis functions are

sinusoids, or complex exponentials, {e*“t},, ¢ def v—1:
1 r Lwt
f(t) = o [dwf(w)e™,
2w

where w is the frequency; the representation is f(t) — f(w), from ¢-space
to w space. The Fourier domain is therefore useful for representing the
frequency content of a signal.

e Fourier bases are perfectly localised w.r.t. frequency, w, but their sup-
port? is the whole real axis, (—o0,00): they are not localised in physical
space. This means that we cannot tell when a particular ‘frequency event’
happened.

2 «Support’ is the part of the domain of a function in which it is non—zero.

E. Roussos 3



ISPRS Intl. Summer Sch. Advances in Medical Imaging
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Figure 3: A 3-frame {by, bs, b3} in 2-D space, (z,y).

e Wavelets are basis functions that span the space of signals with finite
energy?, therefore they can represent any function in this space.
2.2.1 From bases to frames

e We can represent a vector with more “bases” than the dimensionality of
the vector space itself (under some conditions): see Fig. 2.2.1.

e This is called an overcomplete representation, and it is very useful in many
contexts. The elements of a frame are generically called ‘atoms’.

2.2.2 Localised Bases

Properties of localised bases bases: “chop up” signals into small pieces. Heisen-
berg bozes.

o If we combine a Fourier basis ¢! with a window g¢(t) that has finite
support, we cut off the part of the signal outside the window.

e By shifting the window, in physical space, by u, we get a family of atoms

{gu,w}5

def
Juw(t) = eyt —u).

e This leads to the windowed or short time Fourier Transform (STFT),
f@) — f(u,w):

F,w) = (fr guw) = / At (t)g(t — upe",

where (-) is the inner product.

3We can define the energy of a function by %f;’rdx |f(x)]2.
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2.2.3 Time—frequency Tiling

e We say that the atoms ‘tile’ the time—frequency space.

We can visualise this by ploting the result of the transform in (u,w)-
space. The support of an atom localised at (u,w) is
¢ O't:| |: (o) (o)
ot X0, = |u——,u+—| X —w+ —;
Lot [ SRR TR
these are called ‘Heisenberg boxes’: they represent the uncertainty, or
trade off, w.r.t. precise localisation in space versus frequency content.

The Heisenberg boxes of ¢ functions are stripes with perfect localisa-
tion on the time axis, ¢, but infinite support on the frequancy axis.

Fourier bases have the exactly oposite representation: perfect local-
isation on the frequency axis, w, but zero “resolution” on the time
axis.

STFT-tiles are identical parallelograms, o; X o, shifted in time and
space in order to cover the time—frequency plane.

e Wavelets are another kind of localised bases with very interesting proper-
ties, which attempt to balance time and frequency localisation; see next.
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3 Wavelets

3.1 General properties

e Wavelets are functions that satisfy certain requirements:

— They integrate to zero: this property makes them ‘wave s’,

— They are well localised in space, i.e. they have ‘compact support’
(“ lets’).

e Wavelets also form families of “self-similar” atoms, in the sense that new
atoms can be formed by the dilation and translation of a basic “template”,
so—called “mother”, wavelet.
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Figure 4: Members of the Daubechies class of wavelets [?]: from left to right,
D2, D4, D8, D10. Each one can form a whole family of bases.

e The concept of scale: since wavelet bases are localised functions, and
they can be formed by the dilation of a mother—wavelet, they naturally
incorporate a notion of characteristic scale. Unlike Fourier bases, where
the natural property is frequency, i.e. ‘number of oscillations per unit
length’, wavelets can be (and usually are) constructed such that they are
identically zero outside a certain range.

e Smoothness property: wavelets trade-off locality of support and smooth-
ness: the less localised they are, the smoother they become.

This is necessary, in order to have a mathematically stable construction.
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These are extremely useful properties, since they allow us to “2zoom” on a certain
level of detail in the signal, and add more detail as needed.

There are many different types, depending on their other properties, like
orthogonality, smoothness, locality of their support, their relation to equivalent
digital filters, etc.; see Fig. 3.1.

3.2

Wavelet transform: Continuous

e As mentioned above, we can construct wavelets by translating and dilating

3.3

a mother wavelet:

ber) = = 0(57). )

where the factor 1/4/s is for normalising the energy across scales.

The generic wavelet, transform of a function, f(¢t) — w(s,7) can then be
written as

wls,r) = (5 ) = [de0s, 0f(0), (3)

where the star denotes complex conjugation. This is an inner product, or
correlation, of our signal with the wavelet function. It is a measure of how
much the details of our signal at that particular scale and position “look
like” our basis.

By taking all translations 7 and dilations s of the mother wavelet, v,
we get a very detailed picture of the information content of our signal,
with respect to scale and spatial position. This is the continuous wavelet
transform, CWT.

A visual representation of the transform in (s, 7)-space is called a scalo-
gram.

We can also perform the inverse operation, w(s, 7) — f(t), from wavelet
space to physical space, by

f(t) = / dsdr w(s, 7)o r (1) (4)

Wavelet transform: Discrete

The Cohen—Daubechies—Feauveau (CDF) machinery (Fourier-based) for the con-
struction of wavelets.

e The CWT is a redundant transform: in order to reconstruct the original

signal from {w; ,} we do not need all dilations, s, and translations, 7.

In fact, in many cases, for example in signal compression, we do not want
to have all wavelet coefficients*.

40f course, in many others we do want to keep all the information.

E. Roussos 7



ISPRS Intl. Summer Sch. Advances in Medical Imaging

=

"k = omega
0 omegal omega2

Figure 5: Wavelet spectra: a particular wavelet basis ;5 spans a region [w1,ws]
in the frequency domain. The scaling function, ¢, covers the lower end of the
frequency spectrum.

e Tt turns out that we can “sparsify” our set of “samples” {(s, )} in Eq. 3 to
only a critical number of them {(s;,7)}, and still be able to reconstruct
the original signal®. We only need to translate and dilate at discrete steps:

1 ~ kroso?
vl = 7o) ?)

We can choose sy = 2, which leads to dyadic sampling, i.e. sampling on a
logarithmic grid of points {(s;,7;)} in position-scale space.

e The discrete wavelet transform can therefore be written as

FO) =Y wintin(t), VikeZ, teR” (6)
4.k

3.3.1 The View from the Fourier Domain

e Note that wavelets are signals too; therefore they have a Fourier represen-
tation.

Now, recalling the fact from Fourier analysis that contraction (resp. di-
lation) by a in the physical domain causes a dilation (resp. contraction)
by the same amount in the frequency domain, F [f(at)] = 1/|a| F [w/a],
a € R, and the fact that daughter—wavelets can be generated by scaling
a mother—wavelet, we see that Eq. 6 amounts to adding a set of wavelet
spectra in the Fourier domain, in order to capture the frequency content
of f, as shown shematically in Fig. 3.3.1.

e Returning to the tiling idea: wavelets tile the time frequency space by
adaptively adjusting their width and height according to Eq. 5.

3.3.2 Multiresolution Analysis
Multiresolution Analysis (MRA) and Mallat’s Pyramid Algorithm

5Technically: this reduced set still spans the space of signals with finite power.
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e From Fig. 3.3.1 we see that a wavelet function has a band-like spectrum,
spanning a region [wy,ws] in the frequency domain. Therefore, recon-
structing a signal f using Eq. 6 can be interpreted as filtering with a set
of band—pass filters.

e Notice, though, that using this construction requires an infinite countable,
in general, number of wavelet bases, since |Aw| — 0, Aw = we — w1, as we
keep dillating the wavelets®.

Stéphane Mallat, [?], made the ingenious observation that one could use
another function instead, the scaling function, ¢, with just the right fre-
quency band. This then, combined with our wavelets, {1} covers the
whole spectrum of f. The action of the scaling function corresponds to
low pass filtering.

e Again, the scaling function can be represented in the Fourier domain by
a linear combination of wavelet bases.

3.3.3 The Fast Wavelet Transform

Signal Processing: Filters for the implementation of the WT. Two scale rela-
tions

e The remarkable thing is that the above analysis can be implemented ex-
tremely efficiently, via an algorithm with computational cost O(n).

e A particular wavelet family corresponds to, and is implemented with,
a filter bank. In particular, the original length NN signal is recursively
passed through a pair of high—pass (G) and low—pass (H) filters. We
store the result of G, which is a sequence of N/2 wavelet coefficients, and
keep splitting and filtering the low—passed portion each time, until we
reach sequences of unit length; one stop the algorithm at a higher level,
of course.

e The above ‘iterated filter bank’ is the pyramid algorithm. Mathematically,
it corresponds to set of relations between wavelets and scaling coefficients
at two different scales, j and j — 1.

e The above construction implements an analysis of a signal into several
levels of detail.

6Intutively, an “infinitely small wavelet” would be “almost like” a Dirac § and its spectrum
would cover a very large region of the frequency domain. On the contrary an “infinitely large
wavelet” would cover a very small region Aw around a point wg.
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4 Wayvelets for Images

The above discussion, although quite generic, did not specifically focus on the
issue of wavelets for two— or higher—dimensional signals.

A digital image can be represented as a matrix A = [A;;] € RV*N with
‘grey level’ A;; at pixel (4, j).

1. The application of the pyramid algorithm on an image can be done in
‘sub—bands’: first the rows of A, {a;};, are filtered using H and G, giving
two new matrices H, A and G, A of dimensions N x N/2.

2. The same operation is performed on the columns of each of these two
matrices giving four matrices, H.-H, A, G.H,A, H.G,A, and G.G,A,
of dimension N/2 x N/2.

The matrix H.H, A contains the low—pass filtered image and the rest the
high pass filtered ones.

3. Store {G:H,A,H.G, A, G.G,A} and continue filtering the low pass im-
age until we get a matrix of dimensions 1 x 1, or stop at a higher node of
the pyramid.

The above algorithmic construction corresponds to the application of the
wavelet transform with two-dimensional wavelets that are temsor products of
one dimensional ones.

4.1 Applications:
I. Compression/Sparse Representation,

II. Denoising.
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