Multiresolution Analysis via Wavelets: An Introductory

Introductory Tutorial

Evangelos Roussos

Introduction
Why wavelets

Signals and Representions

Signals as functions and vectors

representation and transform

frames
Localised Base

Time-frequency Tiling

Wavelet

General properties Wavelet

Multi-resolution Analysis via Wavelets: An Introductory Tutorial

Evangelos Roussos

Program in Applied & Computational Mathematics Princeton University eroussos@math.princeton.edu

ISPRS Intl. Summer Sch. Advances in Medical Imaging - April 24-29, 2006

Why wavelets

Multiresolution
Analysis via
Wavelets:
An
Introductory
Tutorial

Evangelos Roussos

Why wavelets

Signals and Representions

functions and vectors

Domains, representations and transforms

From bases to frames

Localised Bases

Time-frequence

Wavelets

- Wavelets have already had a remarkable impact.
- A lot of people are now applying wavelets to a lot of situations, and all seem to report favorable results.
- What is about wavelets that make them so popular?
- What is it that makes them so useful?

Multiresolution Analysis via Wavelets: Δn Introductory

Tutorial

Roussos

Why wavelets

■ Wavelets are mathematical "Lego bricks" . . .

Multi– resolution Analysis via Wavelets: An

Introductory Tutorial

Evangelos Roussos

Why wavelets

Signals and

Signals as functions and vectors Domains, representation

From bases to frames

Time-frequent Tiling

Wavelets

- Wavelets are mathematical "Lego bricks" . . .
- ... carefully constructed so as to have special properties.

Multi– resolution Analysis via Wavelets: An

Introductory Tutorial

Evangelos Roussos

Why wavelets

Signals and Representions

Signals as functions and vectors Domains, representatio and transform

and transforms
From bases to

Localised Base

Wavelet

General properties

- Wavelets are mathematical "Lego bricks" . . .
- ... carefully constructed so as to have special properties.
- Wavelet analysis is a refinement of Fourier analysis . . .

Multiresolution Analysis via Wavelets: An Introductory

Tutorial Evangelos Roussos

Why wavelets

Signals and Representions

Signals as functions and vectors

Domains, representation and transform

From bases to frames

Localised Base

Time-frequence

Tiling

Wavelets

- Wavelets are mathematical "Lego bricks" . . .
- ... carefully constructed so as to have special properties.
- Wavelet analysis is a refinement of Fourier analysis . . .
- ...incorporating the notions of
 - Multiple scales and
 - Adaptive time—frequency localisation.

Multiresolution Analysis via Wavelets: An Introductory

Tutorial Evangelos Roussos

Why wavelets

Signals and Representions

Domains, representations, and transforms
From bases to frames

Localised Base Time-frequenc Tiling

Wavelets

- Wavelets are mathematical "Lego bricks" . . .
- ... carefully constructed so as to have special properties.
- Wavelet analysis is a refinement of Fourier analysis . . .
- ...incorporating the notions of
 - Multiple scales and
 - Adaptive time—frequency localisation.
- An entire family of wavelets can be constructed from a single 'mother' wavelet.

Multiresolution Analysis via Wavelets: Δn Introductory Tutorial

Evangelos Roussos

Why wavelets

■ You can describe (almost) any function or signal in terms of wavelets ...

Multiresolution
Analysis via
Wavelets:
An
Introductory
Tutorial

Evangelos Roussos

Why wavelets

Signals and

Signals as functions and vectors

Domains,

and transforms
From bases to

Localised Base

Wavelets

General

- You can describe (almost) any function or signal in terms of wavelets . . .
- ...and, actually, with very few of them ...

Multiresolution
Analysis via
Wavelets:
An
Introductory
Tutorial

Evangelos Roussos

Why wavelets

Signals and Representions

Signals as functions and vectors

Domains, representation

representations and transforms From bases to

Localised Base

Wavelet

General properties

- You can describe (almost) any function or signal in terms of wavelets . . .
- ...and, actually, with very few of them ...
- ... using an extremely efficient $(\mathcal{O}(n))$ algorithm.

Multiresolution Analysis via Wavelets: An Introductory Tutorial

Evangelos Roussos

Why wavelets

Representions
Signals as
functions and
vectors
Domains,
representations,
and transforms
From bases to

Wavelets

- You can describe (almost) any function or signal in terms of wavelets . . .
- ...and, actually, with very few of them ...
- ... using an extremely efficient $(\mathcal{O}(n))$ algorithm.
- They are especially useful for describing non-stationary signals and signals with singularities (discontinuities, spikes, etc.).

Wavelets are multi-disciplinary

Multiresolution Analysis via Wavelets: An Introductory Tutorial

Evangelos Roussos

Why wavelets

Signals and Representions

vectors
Domains,
representations
and transforms
From bases to
frames
Localised Bases

Wavelet

- Wavelets have an "interdisciplinary flavour", integrating concepts from various scientific fields
- Functional analysis, signal processing, statistics, and others

Signals as functions and vectors

Multi–
resolution
Analysis via
Wavelets:
An
Introductory
Tutorial

Evangelos Roussos

Introduction
Why wavelets

Representions

Signals as functions and vectors

Domains, representations, and transforms From bases to frames Localised Bases Time-frequency Tiling

Wavelets

- Signals can be modelled as functions, $f: \Omega \to \mathcal{X}$, from the time— (or space—) domain to the space of amplitudes of the signal.
- Digital signals are from $\Omega = \mathbb{I} = \{(i_1, \dots, i_d)\} \subseteq \mathbb{N}^d$, the space of d-tuples of integer indices, to $\mathcal{X} \subseteq \mathbb{R}$.
- Functions can be thought of as "vectors in a very high-dimensional space".
- Intuitively, we can understand this by discretising a function f with sampling interval Δt and letting $\Delta t \rightarrow 0$.

Physical Domain & Sampling

Multiresolution
Analysis via
Wavelets:
An
Introductory
Tutorial

Evangelos Roussos

Why wavelets

Representions
Signals as

Domains, representations, and transforms From bases to frames Localised Bases Time-frequency Tiling

Wavelets General

General properties Wavelet

Physical domain representation: expresses a function f on $\Omega \subseteq \mathbb{R}^d$ as a combination of an impulse-train of Dirac δ -functions at $\mathbf{r}_i = i\Delta\mathbf{r}$:

$$f(\mathbf{r}) = \sum_{i} f_i \delta(\mathbf{r} - \mathbf{r}_i) = \sum_{i} f(\mathbf{r}_i) \delta(\mathbf{r} - \mathbf{r}_i), \quad \mathbf{r} \in \Omega \subseteq \mathbb{R}^d.$$

- We can think of the δ -function as "picking" the value of a function, $f(\mathbf{r}_i) = f_i$, at each \mathbf{r}_i .
- The discrete equivalent is using the canonical basis, $\{e_i\}_i$, $e_i = (\dots, 0, \dots, 0, 1, 0, \dots, 0, \dots)$, with a 1 at position $i > \infty$

Domains, representations, and transforms

Multiresolution Analysis via Wavelets: An Introductory

Tutorial Evangelos

Roussos

Why wavelets

Representions
Signals as functions and vectors

Domains, representations, and transforms From bases to frames Localised Bases Time-frequency Tiling

Wavelets

General properties Wavelet ■ More generally, represent a signal as a sum of bases, $\{\mathbf{b}_k\}$:

$$f(\mathbf{r}) = \sum_{k} c_{k} b_{k}(\mathbf{r}), \quad \mathbf{r} \in \Omega \subseteq \mathbb{R}^{d}.$$
 (1)

- 'Choosing a representation' means expressing our signal in a certain basis: from the signal coefficients $\{f_i\}_i$ we get the coefficients $\{c_k\}_k$.
- Bases are "prototypical signals" and their amplitude is 'modulated' by their corresponding coefficient.

Frequency Domain (Fourier) Representation

Multiresolution Analysis via Wavelets: Δn Introductory

Tutorial Evangelos Roussos

Representions

Domains.

representations. and transforms

■ The basis functions are sinusoids, or complex exponentials, $\{e^{\iota\omega t}\}_{\iota\iota\iota} \iota \stackrel{\mathrm{def}}{=} \sqrt{-1}$:

$$f(t) = \int \mathrm{d}\omega \, \hat{f}(\omega) \mathrm{e}^{\iota \omega t},$$

where ω is the frequency

■ The inverse representation is $f(t) \mapsto \hat{f}(\omega)$, from t-space to ω -space:

$$\hat{f}(\omega) \stackrel{\mathrm{def}}{=} \int \! \mathrm{d}t \, \mathrm{e}^{-\iota \omega t} f(t) = \langle e_{\omega}, f \rangle,$$

where $\langle \cdot \rangle$ is the inner product.

■ The Fourier domain is therefore useful for representing the frequency content of a signal. ◆□→ ◆□→ ◆□→ ◆□→ □

Problems with the Fourier representation

Multiresolution Analysis via Wavelets: An Introductory Tutorial

Evangelos Roussos

Introduction
Why wavelets

Representions
Signals as

Domains, representations, and transforms From bases to frames Localised Bases

Wavelet

- Fourier bases are perfectly localised w.r.t. frequency, ω , but their support is the whole real axis, $(-\infty, \infty)$: they are not localised in physical space.
- This means that we cannot tell when a particular 'frequency event' happened.
- They are not very useful for time—varying signals.

The Gibbs effect

Multiresolution
Analysis via
Wavelets:
An
Introductory
Tutorial

Evangelos Roussos

Why wavelets

Representions
Signals as

Signals as functions and vectors

Domains.

representations, and transforms From bases to frames Localised Bases Time-frequency

Wavelets
General
properties

- Occurs in the representation of functions with discontinuities (jumps) with Fourier bases.
- An *infinite* number of functionsis needed to model the discontinuity.
- Using a finite ('truncated') series leads to fixed-size oscillations ("overshoots").
- A fundamental issue with the Fourier transform: we are trying to model localised features with non-local bases!.

From bases to frames

Multi–
resolution
Analysis via
Wavelets:
An
Introductory
Tutorial

Evangelos Roussos

Why wavelets

Signals and Representions

tunctions and vectors
Domains, representations and transforms
From bases to frames
Localised Bases

frames
Localised Base
Time–frequence
Tiling

Wavelets

- We can represent a vector with more "bases" than the dimensionality of the vector space itself (under some conditions).
- This is called an *overcomplete* representation.
- It is very useful since it is a *robust* representation.
- The elements of a frame are generically called 'atoms'.

Windowed Fourier Transform

Multi– resolution Analysis via Wavelets: An

An Introductory Tutorial

Evangelos Roussos

Why wavelets

Representions

functions and vectors

Domains, representations, and transforms

From bases to frames

Localised Bases Time-frequency Tiling

Wavelets

General properties Wavelet

- If we combine a Fourier basis $e^{i\omega t}$ with a window g(t) that has finite support, we cut off the part of the signal outside the window.
- By shifting the window by u, in physical space, we get a family of atoms $\{g_{u,\omega}\}$:

$$g_{u,\omega}(t) \stackrel{\mathrm{def}}{=} e^{\iota \omega t} g(t-u).$$

■ This leads to the windowed— or short—time Fourier Transform (STFT), $f(t) \longmapsto \tilde{f}(u,\omega)$:

$$\tilde{f}(u,\omega) = \langle g_{u,\omega}, f \rangle = \int \!\!\mathrm{d}t \, g^*(t-u) \mathrm{e}^{-\iota \omega t} f(t).$$

lacktriangle Gives information about signals in (t,ω) simultaneously.

Time-frequency Tiling

Multi– resolution Analysis via Wavelets: An

Introductory Tutorial Evangelos Roussos

Introduction

Signals and Representions

Signals as functions and vectors Domains, representations, and transforms From bases to frames Localised Bases

Localised Bases Time-frequency Tiling

Wavelet

General properties Wavelet

We say that the atoms 'tile' the time-frequency space.

- We can visualise this by ploting the result of the transform in (u, ω) —space.
- The (effective) support of an atom localised at (u, ω) is

$$\sigma_t \times \sigma_\omega \doteq \left[u - \frac{\sigma_t}{2}, u + \frac{\sigma_t}{2} \right] \times \left[\omega - \frac{\sigma_\omega}{2}, \omega + \frac{\sigma_\omega}{2} \right]$$

■ These are called 'Heisenberg boxes': they represent the uncertainty, or trade—off, w.r.t. precise localisation in space versus frequency content.

The tiling game

Multiresolution Analysis via Wavelets: An Introductory Tutorial

Evangelos Roussos

Introduction
Why wavelet

Signals and Representions

Signals as functions and vectors

Domains, representation

and transforms

frames

Time-frequency Tiling

Wavelets

Tiles

resolution Analysis via Wavelets: An Introductory Tutorial

Multi-

Evangelos Roussos

Why wavelets

Signals and Representions

Signals as functions and vectors
Domains, representations, and transforms
From bases to frames
Localised Bases
Time-frequency

Tiling Wavelet

- The Heisenberg boxes of δ functions are stripes with perfect localisation on the time axis, t, but infinite support on the frequency axis.
- Fourier bases have the exactly oposite representation: perfect localisation on the frequency axis, ω , but zero "resolution" on the time axis.
- STFT-tiles are *identical* parallelograms, $\sigma_t \times \sigma_\omega$, shifted in time and space in order to cover the time-frequency plane.

Aren't we done after the STFT?

Multiresolution Analysis via Wavelets: Δn

Introductory Tutorial

Evangelos Roussos

General properties

- The amount of localisation of STFT-atoms remains fixed.
- They introduce a *fixed scale* into the analysis: width of the window. σ .
- Signal features with time—scales $\Delta t < \sigma$ (>) underlocalised (overlocalised) in time.
- Must be obtained as a result of destructive (constructive) interference between the $g_{\mu,\omega}$'s.
- Many atoms must be used: $\tilde{f}(\omega, t)$ must be spread out.

Multiresolution
Analysis via
Wavelets:
An
Introductory
Tutorial

Evangelos Roussos

Why wavelets

Representions

functions and vectors Domains, representations, and transforms From bases to frames Localised Bases

Tiling

General properties

■ Wavelets are basis functions that *span the space of signals* with finite energy, therefore they can represent any function in this space.

- They are another kind of localised bases which *adapt* their time— and frequency—localisation.
- Wavelet analysis is a *scale*—independent method.
- Wavelets must satisfy certain requirements:
 - They integrate to zero: this property makes them 'wave—s',
 - They are *well localised* in space, i.e. they have 'compact support' ('-lets').

Wavelet construction: families

Multiresolution Analysis via Wavelets:

An Introductory Tutorial

Evangelos Roussos

Why wavelets

Signals and Representions

Signals as functions and vectors
Domains, representations and transforms
From bases to frames
Localised Bases
Time—frequency

Wavelets

General properties Wavelet

- Start with a window function $\psi(t)$: mother wavelet.
- Use ψ and all possible scalings of ψ :

$$\psi_{s}(t) = \frac{1}{\sqrt{s}} \psi\left(\frac{t}{s}\right),\,$$

where s: scale factor.

■ Time localisation of signals: create translated versions of ψ :

$$\psi_{s,\tau}(t) = \psi_s(t-\tau) = \frac{1}{\sqrt{s}} \psi\left(\frac{t-\tau}{s}\right).$$

General properties

Multiresolution
Analysis via
Wavelets:
An
Introductory
Tutorial

Evangelos Roussos

Introduction
Why wavelets

Representions

Jagnas as functions and vectors
Domains, representations, and transforms
From bases to frames
Localised Bases
Time-frequency

Wavelet

- **Scale:** since wavelet bases are localised functions, and they can be formed by the dilation of a mother—wavelet, they naturally incorporate a notion of characteristic scale.
- **Compact support:** They are constructed such that they can be *identically zero* outside a certain range.
- Smoothness: wavelets trade-off locality of support and smoothness: the less localised they are, the smoother they become.

General properties, contd.

Multiresolution Analysis via Wavelets: An Introductory Tutorial

Evangelos Roussos

Why wavelets

Signals and Representions

Signals as functions and vectors

Domains, representations and transforms

From bases to frames

Localised Bases

Time—frequency

Wavele

- Multi-resolution: they allow us to "zoom" on a certain level of detail in the signal, and add more detail as needed.
- Variety: There are many different types, depending on their other properties, like orthogonality, smoothness, locality of their support, their relation to equivalent digital filters, etc.

Continuous Wavelet Transform

Multiresolution
Analysis via
Wavelets:
An
Introductory
Tutorial

Evangelos Roussos

Why wavelets

Signals and Representions

Signals as functions and vectors
Domains, representations, and transforms
From bases to frames
Localised Bases
Time-frequency
Tiling

Wavelets
General
properties
Wavelet

■ The generic wavelet transform of a function, $f(t) \longmapsto w(s,\tau)$, can then be written as

$$w(s,\tau) = \langle \psi_{s,\tau}, f \rangle = \int dt \, \psi_{s,\tau}^*(t) f(t), \qquad (2)$$

- Again, this is an inner product, or correlation, of our signal with the wavelet function.
- It is a measure of how much the details of our signal at that particular scale and position "look like" our basis.
- By taking all translations τ and dilations s we get a very detailed picture of the *information content* of our signal, w.r.t. scale and spatial position.
- A visual representation of the transform in (s, τ) —space is called a *scalogram*.

Discrete Wavelet Transform

Multi– resolution Analysis via Wavelets: An

An Introductory Tutorial

Evangelos Roussos

Why wavelets

Representions

vectors

Domains,
representations
and transforms

From bases to
frames

Localised Base
Time-frequenc

Wavele

General properties Wavelet

- The CWT is a *redundant* transform: to reconstruct the original signal from $\{w_{s,\tau}\}$ we do not need *all* dilations, s, and translations, τ .
- In many cases (e.g. signal compression) we do *not* want to have all wavelet coefficients.
- We can "sparsify" our set of "samples" $\{(s,\tau)\}$ to only a critical number of them, $\{(s_j,\tau_k)\}$.
- Translate and dilate at discrete steps:

$$\psi_{j,k}(t) = \frac{1}{\sqrt{s_0^j}} \psi\left(\frac{t - k\tau_0 s_0^j}{s_0^j}\right)$$
(3)

■ The discrete wavelet transform is:

$$f(t) = \sum_{j,k} w_{j,k} \psi_{j,k}(t), \quad \forall j,k \in \mathbb{Z}, \quad t \in \mathbb{R}^d.$$
 (4)

Discrete Wavelet Transform

Multiresolution Analysis via Wavelets: An Introductory Tutorial

Evangelos Roussos

Introduction
Why wavelet

Signals and Representions

Signals as functions and vectors

Domains, representations

and transforms From bases to

Localised Base

Time-frequenc Tiling

General

propertion Wavelet

The View from the Fourier Domain

Multiresolution
Analysis via
Wavelets:
An
Introductory
Tutorial

Evangelos Roussos

Why wavelets

Signals and Representions

functions and vectors
Domains, representations, and transforms
From bases to frames
Localised Bases
Time-frequency
Tiling

Wavelets

- Wavelets are signals too: they have a Fourier representation.
- Recall:
 - Contraction by a in physical domain causes a dilation by the same amount in frequency domain:

$$\mathcal{F}\left[f(\mathit{at}) \right] = 1/|\mathit{a}| \, \hat{f}\left[\omega/\mathit{a} \right], \quad \mathit{a} \in \mathbb{R},$$

- Daughter-wavelets can be generated by scaling a mother-wavelet.
- The DWT amounts to adding a set of wavelet spectra in Fourier domain, in order to capture the *frequency content* of *f*

Multiresolution Analysis (MRA)

Multiresolution
Analysis via
Wavelets:
An
Introductory
Tutorial

Evangelos Roussos

Why wavelets

Signals and Representions

Signals as functions and vectors
Domains, representations and transforms
From bases to frames
Localised Bases

Wavelet

- As we keep dillating the wavelets, $|\Delta\omega| \to 0$, $\Delta\omega = \omega_2 \omega_1$,
- We need an infinite countable number of wavelet bases.
- One one could use another function instead, the *scaling* function, ϕ , with just the right frequency band.
- This can again represented in wavelets.

The discrete wavelet transform

Multi– resolution Analysis via Wavelets: An

Introductory Tutorial

Evangelos Roussos

Introduction
Why wavelets

Signals and Representions

functions and vectors

Domains, representations, and transforms

From bases to frames

Localised Bases

Localised Base Time-frequenc Tiling

Wavelet

General properties Wavelet

- Combined with our wavelets, $\{\phi\} \cup \{\psi_j\}_j$ covers the whole spectrum of f.
- In physical domain,

$$f(t) = \sum_{k} c_k \phi_k(t) + \sum_{j,k} d_{j,k} \psi_{j,k}(t)$$

• $\{c_k\}_k$ are the scaling coefficients and $\{d_{j,k}\}_{j,k}$ are the wavelet coefficients.

Implementation: The Fast Wavelet Transform

Multiresolution
Analysis via
Wavelets:
An
Introductory
Tutorial

Evangelos Roussos

Introduction
Why wavelets

Signals and Representions

functions and vectors

Domains, representations and transforms

From bases to frames

Localised Base

Wavelet

- A wavelet function has a band-like spectrum.
- Reconstructing a signal *f* can be interpreted as filtering with a set of *band-pass* filters.
- The action of the scaling function corresponds to *low–pass* filtering.

FDWT and Filter Banks

Multiresolution
Analysis via
Wavelets:
An
Introductory
Tutorial

Evangelos Roussos

Why wavelets

Signals and Representions

functions and vectors
Domains, representations, and transforms
From bases to frames
Localised Bases

Wavelets

- The above analysis can be implemented *extremely* efficiently: computational cost $\mathcal{O}(n)$.
- The transform is implemented with a filter—bank, (**H**, **G**), via an iterated ('pyramid') algorithm.
- Iterative analysis of a signal into several levels of detail.

Wavelets for Images

Multiresolution
Analysis via
Wavelets:
An
Introductory
Tutorial

Evangelos Roussos

Introduction Why wavelets

Signals and Representions

functions and vectors
Domains, representations and transforms
From bases to frames
Localised Bases
Time-frequency

Wavelet

- A digital image can be represented as a matrix $\mathbf{A} = [A_{ij}] \in \mathbb{R}^{N \times N}$ with 'grey level' A_{ij} at pixel (i, j).
- The application of the pyramid algorithm on an image can be done iteratively, in 'sub-bands'.
- Corresponds to the application of the wavelet transform with 2–D wavelets that are *tensor products* of 1–D ones.

Wavelet Denoising

Multiresolution Analysis via Wavelets: An Introductory

Tutorial

Evangelos
Roussos

Introduction
Why wavelets

Signals and Representions

vectors

Domains,
representations,
and transforms

From bases to
frames

Localised Bases

Localised Bases Time-frequenc Tiling

Wavelet

General properties Wavelet

- Extract the desired signal from the noise.
- For the case of Gaussian white noise, the signal extraction problem can be stated as: Given a set of noisy observations $\{f_i^z\}_i$, $f_i^z = f^z(t_i)$, sampled at times $t_i = i/n$, determine the 'true' values of the signal f.
- The observation model is:

$$f_i^z = f_i + \sigma z_i, \qquad i = 1, \ldots, n,$$

where σ^2 is the noise variance, and $z_i \sim \mathcal{N}(0,1)$.

Wavelet Denoising II

Multiresolution Analysis via Wavelets: An Introductory

Tutorial Evangelos Roussos

Introduction
Why wavelets

Signals and Representions

functions and vectors

Domains, representation and transform

From bases to frames

Localised Bases

Time-frequency

Wavelet

General properties Wavelet

■ Re—write the observation model in the wavelet domain:

$$\mathbf{W}f_i^z = \mathbf{W}(f_i + \sigma z_i) = \mathbf{W}f_i + \sigma \mathbf{W}z_i.$$

■ If $\mathbf{W} = \{\psi_k\}_k$ is an orthonormal basis, the WT of Gaussian white noise, z_i , is Gaussian white noise, w_i , of the same amplitude. So,

$$\mathbf{W}f_i^z = \mathbf{W}f_i + \sigma w_i.$$

 \blacksquare Solving for f_i , gives

$$f_i = \mathbf{W}^{-1}(\mathbf{W}f_i^z - \sigma w_i).$$

Thresholding function

Multiresolution
Analysis via
Wavelets:
An
Introductory
Tutorial

Evangelos Roussos

Introduction
Why wavelets

Signals and Representions

vectors
Domains,
representations
and transforms
From bases to
frames
Localised Base

Localised Bases
Time-frequency
Tiling

Wavelet

- In general we do not know σw_i . So, we need to estimate it: $\lambda = \widehat{\sigma w_i}$.
- Remove the estimated noise contribution from each of the wavelet coefficients $c_k = (\mathbf{W}\mathbf{f}^z)_k$. An appropriate way to do this is via the *soft-thresholding* function (see Fig. 6):

$$\eta_{\lambda}(x) = \begin{cases} x - \lambda, & x \ge \lambda \\ 0, & |x| < \lambda \\ x + \lambda, & x < -\lambda \end{cases}$$

Estimating the threshold λ

Multiresolution
Analysis via
Wavelets:
An
Introductory
Tutorial

Evangelos Roussos

Why wavelets

Signals and Representions

Domains, representations and transforms From bases to frames

Localised Base Time–frequenc Tiling

Wavelets

General properties Wavelet ■ Estimate the threshold, λ , using the 'universal' 'VisuShrink' method of Donoho and Johnstone:

$$\lambda = \sigma \sqrt{2\log(n)},$$

where n is the number of data samples.

■ The value of the noise variance, σ^2 , is not known. A robust estimate is

$$\hat{\sigma} = \frac{\text{med}(\{|w_{J-1,k} - m|\}_k)}{0.6745},$$

where $m = \text{med}(\{w_{J-1,k}\}_k)$, the median absolute value of the finest–scale (J-1) wavelet coefficients.

Applying the method to 1–D functions

Multiresolution Analysis via Wavelets: An Introductory Tutorial

Evangelos Roussos

Why wavelets

Signals and Representions

functions and vectors

Domains, representations and transforms

From bases to frames

Localised Bases Time-frequence Tiling

General

Figure: 'Blocky' function and noisy version with $\mathsf{SNR} = \mathsf{5dB}$.

Figure: Wavelet denoising of the 'Blocky' function: left: VisuShrink, right: 'analytic' estimator.

Applying the method to 2–D functions

Multiresolution Analysis via Wavelets: An Introductory Tutorial

Evangelos Roussos

Why wavelets

Representions

Signals as functions and vectors

representations and transforms

frames Localised Bases

Time-frequenc Tiling

Wavelets

Figure: Two-dimenstional wavelet denoising

