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Why wavelets

Wavelets have already had a remarkable impact.

A lot of people are now applying wavelets to a lot of
situations, and all seem to report favorable results.

What is about wavelets that make them so popular?

What is it that makes them so useful?
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Wavelets?

Wavelets are mathematical “Lego bricks” . . .
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Wavelets?

Wavelets are mathematical “Lego bricks” . . .

. . . carefully constructed so as to have special properties.
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Wavelets?

Wavelets are mathematical “Lego bricks” . . .

. . . carefully constructed so as to have special properties.

Wavelet analysis is a refinement of Fourier analysis . . .

Evangelos Roussos Multi–resolution Analysis via Wavelets: An Introductory Tutorial



Multi–
resolution

Analysis via
Wavelets:

An
Introductory

Tutorial

Evangelos
Roussos

Introduction

Why wavelets

Signals and
Representions

Signals as
functions and
vectors

Domains,
representations,
and transforms

From bases to
frames

Localised Bases

Time–frequency
Tiling

Wavelets

General
properties

Wavelet
Transform

Multi–resolution
Analysis (MRA)

Wavelets?

Wavelets are mathematical “Lego bricks” . . .

. . . carefully constructed so as to have special properties.

Wavelet analysis is a refinement of Fourier analysis . . .

. . . incorporating the notions of

Multiple scales and
Adaptive time–frequency localisation.
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Wavelets?

Wavelets are mathematical “Lego bricks” . . .

. . . carefully constructed so as to have special properties.

Wavelet analysis is a refinement of Fourier analysis . . .

. . . incorporating the notions of

Multiple scales and
Adaptive time–frequency localisation.

An entire family of wavelets can be constructed from a
single ‘mother’ wavelet.
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What wavelets can do for you

You can describe (almost) any function or signal in terms
of wavelets . . .
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What wavelets can do for you

You can describe (almost) any function or signal in terms
of wavelets . . .

. . . and, actually, with very few of them . . .
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What wavelets can do for you

You can describe (almost) any function or signal in terms
of wavelets . . .

. . . and, actually, with very few of them . . .

. . . using an extremely efficient (O(n)) algorithm.
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What wavelets can do for you

You can describe (almost) any function or signal in terms
of wavelets . . .

. . . and, actually, with very few of them . . .

. . . using an extremely efficient (O(n)) algorithm.

They are especially useful for describing non–stationary

signals and signals with singularities (discontinuities,
spikes, etc.).
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Wavelets are multi–disciplinary

Time−frequency Analysis

Filter BanksSignal Processing

Approximation Theory

Estimation Theory

Information Theory/Sampling

Functional Analysis

Splines

Wavelets

RKH, Besov, Sobolev Spaces

Multiresolution

Wavelets have an “interdisciplinary flavour”, integrating
concepts from various scientific fields

Functional analysis, signal processing, statistics, and others
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Signals as functions and vectors

0 i

f  = f(t )i i

t
T

Dt

f

t

Signals can be modelled as functions, f : Ω → X , from the
time– (or space–) domain to the space of amplitudes of
the signal.
Digital signals are from Ω = I = {(i1, . . . , id)} ⊆ N

d , the
space of d–tuples of integer indices, to X ⊆ R.
Functions can be thought of as “vectors in a very
high–dimensional space”.
Intuitively, we can understand this by discretising a
function f with sampling interval ∆t and letting ∆t → 0.
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Physical Domain & Sampling

0 i

f  = f(t )i i

t
T

Dt

f

t

Physical domain representation: expresses a function f on
Ω ⊆ R

d as a combination of an impulse-train of Dirac
δ–functions at ri = i∆r:

f (r) =
∑

i

fiδ(r − ri ) =
∑

i

f (ri )δ(r − ri), r ∈ Ω ⊆ R
d .

We can think of the δ–function as “picking” the value of a
function, f (ri) = fi , at each ri .
The discrete equivalent is using the canonical basis, {ei}i ,
ei = (. . . , 0, . . . , 0, 1, 0, . . . , 0, . . .), with a 1 at position i .
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Domains, representations, and transforms

More generally, represent a signal as a sum of bases, {bk}:

f (r) =
∑

k

ckbk(r), r ∈ Ω ⊆ R
d . (1)

‘Choosing a representation’ means expressing our signal in

a certain basis: from the signal coefficients {fi}i we get
the coefficients {ck}k .

Bases are “prototypical signals” and their amplitude is
‘modulated’ by their corresponding coefficient.
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Frequency Domain (Fourier) Representation

The basis functions are sinusoids, or complex exponentials,

{eιωt}ω, ι
def
=

√
−1:

f (t) =

∫
dω f̂ (ω)eιωt ,

where ω is the frequency

The inverse representation is f (t) 7−→ f̂ (ω), from t–space
to ω–space:

f̂ (ω)
def
=

∫
dt e−ιωt f (t) = 〈eω, f 〉,

where 〈·〉 is the inner product.

The Fourier domain is therefore useful for representing the
frequency content of a signal.
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Problems with the Fourier representation

Fourier bases are perfectly localised w.r.t. frequency, ω,
but their support is the whole real axis, (−∞,∞): they

are not localised in physical space.

This means that we cannot tell when a particular
‘frequency event’ happened.

They are not very useful for time–varying signals.
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The Gibbs effect

Occurs in the representation of functions with
discontinuities (jumps) with Fourier bases.
An infinite number of functionsis needed to model the
discontinuity.
Using a finite (‘truncated’) series leads to fixed–size
oscillations (“overshoots”).
A fundamental issue with the Fourier transform: we are

trying to model localised features with non–local bases!.
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From bases to frames

y

1

b2 b3

x

b

We can represent a vector with more “bases” than the
dimensionality of the vector space itself (under some
conditions).

This is called an overcomplete representation.

It is very useful since it is a robust representation.

The elements of a frame are generically called ‘atoms’.
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Windowed Fourier Transform

If we combine a Fourier basis eιωt with a window g(t)
that has finite support, we cut off the part of the signal
outside the window.

By shifting the window by u, in physical space, we get a
family of atoms {gu,ω}:

gu,ω(t)
def
= eιωtg(t − u).

This leads to the windowed– or short–time Fourier
Transform (STFT), f (t) 7−→ f̃ (u, ω):

f̃ (u, ω) = 〈gu,ω, f 〉 =

∫
dt g∗(t − u)e−ιωt f (t).

Gives information about signals in (t, ω) simultaneously.
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Time–frequency Tiling

We say that the atoms ‘tile’ the time–frequency space.

We can visualise this by ploting the result of the transform
in (u, ω)–space.

The (effective) support of an atom localised at (u, ω) is

σt × σω
.
=

[
u − σt

2
, u +

σt

2

]
×

[
ω − σω

2
, ω +

σω

2

]

These are called ‘Heisenberg boxes’: they represent the

uncertainty, or trade–off, w.r.t. precise localisation in

space versus frequency content.

Evangelos Roussos Multi–resolution Analysis via Wavelets: An Introductory Tutorial



Multi–
resolution

Analysis via
Wavelets:

An
Introductory

Tutorial

Evangelos
Roussos

Introduction

Why wavelets

Signals and
Representions

Signals as
functions and
vectors

Domains,
representations,
and transforms

From bases to
frames

Localised Bases

Time–frequency
Tiling

Wavelets

General
properties

Wavelet
Transform

Multi–resolution
Analysis (MRA)

The tiling game
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Tiles

The Heisenberg boxes of δ functions are stripes with
perfect localisation on the time axis, t, but infinite support
on the frequancy axis.

Fourier bases have the exactly oposite representation:
perfect localisation on the frequency axis, ω, but zero
“resolution” on the time axis.

STFT–tiles are identical parallelograms, σt × σω, shifted in
time and space in order to cover the time–frequency plane.
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Aren’t we done after the STFT?

The amount of localisation of STFT–atoms remains fixed.

They introduce a fixed scale into the analysis: width of the

window, σ.

Signal features with time–scales ∆t < σ (>)
underlocalised (overlocalised) in time.

Must be obtained as a result of destructive (constructive)
interference between the gu,ω’s.

Many atoms must be used: f̃ (ω, t) must be spread out.
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Wavelets

Wavelets are basis functions that span the space of signals

with finite energy, therefore they can represent any
function in this space.

They are another kind of localised bases which adapt their
time– and frequency–localisation.

Wavelet analysis is a scale–independent method.

Wavelets must satisfy certain requirements:

They integrate to zero: this property makes them ‘wave–s’,
They are well localised in space, i.e. they have ‘compact
support’ (‘–lets’).
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Wavelet construction: families

Start with a window function ψ(t): mother wavelet.

Use ψ and all possible scalings of ψ:

ψs(t) =
1√
s
ψ

( t

s

)
,

where s: scale factor.

Time localisation of signals: create translated versions of
ψ:

ψs,τ (t) = ψs(t − τ) =
1√
s
ψ

(
t − τ

s

)
.
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General properties

Scale: since wavelet bases are localised functions, and
they can be formed by the dilation of a mother–wavelet,
they naturally incorporate a notion of characteristic scale.

Compact support: They are constructed such that they
can be identically zero outside a certain range.

Smoothness: wavelets trade-off locality of support and
smoothness: the less localised they are, the smoother they
become.
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General properties, contd.

Multi–resolution: they allow us to “zoom” on a certain
level of detail in the signal, and add more detail as needed.
Variety: There are many different types, depending on
their other properties, like orthogonality, smoothness,
locality of their support, their relation to equivalent digital
filters, etc.
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Continuous Wavelet Transform

The generic wavelet transform of a function,
f (t) 7−→ w(s, τ), can then be written as

w(s, τ) = 〈ψs,τ , f 〉 =

∫
dt ψ∗

s,τ (t)f (t), (2)

Again, this is an inner product, or correlation, of our signal
with the wavelet function.

It is a measure of how much the details of our signal at

that particular scale and position “look like” our basis.

By taking all translations τ and dilations s we get a very
detailed picture of the information content of our signal,
w.r.t. scale and spatial position.

A visual representation of the transform in (s, τ)–space is
called a scalogram.
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Discrete Wavelet Transform

The CWT is a redundant transform: to reconstruct the
original signal from {ws,τ} we do not need all dilations, s,
and translations, τ .

In many cases (e.g. signal compression) we do not want to
have all wavelet coefficients.

We can “sparsify” our set of “samples” {(s, τ)} to only a
critical number of them, {(sj , τk)}.
Translate and dilate at discrete steps:

ψj ,k(t) =
1√
s0j

ψ

(
t − kτ0s0

j

s0j

)
(3)

The discrete wavelet transform is:

f (t) =
∑

j ,k

wj ,kψj ,k(t), ∀j , k ∈ Z, t ∈ R
d . (4)
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Discrete Wavelet Transform
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Wavelets are signals too: they have a Fourier
representation.
Recall:

Contraction by a in physical domain causes a dilation by
the same amount in frequency domain:

F [f (at)] = 1/|a| f̂ [ω/a] , a ∈ R,

Daughter–wavelets can be generated by scaling a
mother–wavelet.

The DWT amounts to adding a set of wavelet spectra in
Fourier domain, in order to capture the frequency content

of f .
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As we keep dillating the wavelets, |∆ω| → 0,
∆ω = ω2 − ω1,

We need an infinite countable number of wavelet bases.

One one could use another function instead, the scaling

function, φ, with just the right frequency band.

This can again represented in wavelets.
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The discrete wavelet transform

Combined with our wavelets, {φ} ∪ {ψj}j covers the whole
spectrum of f .

In physical domain,

f (t) =
∑

k

ckφk(t) +
∑

j ,k

dj ,kψj ,k(t)

{ck}k are the scaling coefficients and {dj ,k}j ,k are the
wavelet coefficients.
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Implementation: The Fast Wavelet Transform

A wavelet function has a band-like spectrum.

Reconstructing a signal f can be interpreted as filtering
with a set of band–pass filters.

The action of the scaling function corresponds to low–pass

filtering.
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FDWT and Filter Banks

l=3

(2)

w(1)(1)x

x (2)

x (3) w(3)...

x

filter
high−passlow−pass

filter

low−pass
filter filter

high−pass

low−pass
filter filter

high−pass

l=1

l=2

w

The above analysis can be implemented extremely

efficiently: computational cost O(n).
The transform is implemented with a filter–bank, (H,G),
via an iterated (‘pyramid’) algorithm.
Iterative analysis of a signal into several levels of detail.
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Wavelets for Images

A digital image can be represented as a matrix
A = [Aij ] ∈ R

N×N with ‘grey level’ Aij at pixel (i , j).

The application of the pyramid algorithm on an image can
be done iteratively, in ‘sub–bands’.

Corresponds to the application of the wavelet transform
with 2–D wavelets that are tensor products of 1–D ones.
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Wavelet Denoising

Extract the desired signal from the noise.

For the case of Gaussian white noise, the signal extraction
problem can be stated as: Given a set of noisy

observations {f z
i }i , f z

i = f z(ti), sampled at times

ti = i/n, determine the ‘true’ values of the signal f .

The observation model is:

f z
i = fi + σzi , i = 1, . . . , n,

where σ2 is the noise variance, and zi ∼ N (0, 1).
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Wavelet Denoising II

w −1

s

W
ŵ

x̂x TW

^

Re–write the observation model in the wavelet domain:

Wf z
i = W(fi + σzi) = Wfi + σWzi .

If W = {ψk}k is an orthonormal basis, the WT of
Gaussian white noise, zi , is Gaussian white noise, wi , of
the same amplitude. So,

Wf z
i = Wfi + σwi .

Solving for fi , gives

fi = W−1(Wf z
i − σwi ).
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Thresholding function

−lambda

lambda

In general we do not know σwi . So, we need to estimate
it: λ = σ̂wi .
Remove the estimated noise contribution from each of the
wavelet coefficients ck = (Wfz)k . An appropriate way to
do this is via the soft–thresholding function (see Fig. 6):

ηλ(x) =





x − λ, x ≥ λ
0, |x | < λ
x + λ, x < −λ
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Estimating the threshold λ

Estimate the threshold, λ, using the ‘universal’
‘VisuShrink’ method of Donoho and Johnstone:

λ = σ
√

2 log(n),

where n is the number of data samples.

The value of the noise variance, σ2, is not known. A
robust estimate is

σ̂ =
med({|wJ−1,k − m|}k)

0.6745
,

where m = med({wJ−1,k}k), the median absolute value of
the finest–scale (J − 1) wavelet coefficients.
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Applying the method to 1–D functions
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Figure: ‘Blocky’ function and noisy version with SNR = 5dB.
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Figure: Wavelet denoising of the ‘Blocky’ function: left: VisuShrink,
right: ‘analytic’ estimator.
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Applying the method to 2–D functions

Noisy Box Function Lowpass Filter

VisuShrink Data Analytic

Figure: Two–dimenstional wavelet denoising
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