

1

3

5

6

International Summer School Advances in Medical Imaging, Aghios Nikolaos, Crete, Greece, 24-29 April 2006

)

by Luis Ibanez

7

8

9

TAPES WG V/6

MEDICAL INAGE ANALYSIS, HUMAN MOTION AND BODY

MEASUREMENT

Software-process and documentation

CVS:

Version management

TK Modules

TK Modules

Trick Modul

11

13

14

15

16

Ivo Wolf German Cancer Research Center Heidelberg, Germany ISPRS WG V/6
MEDICAL IMAGE ANALYSIS, HUMAN MOTION AND BODY
MEASUREMENT The Code for the Example typedef itk::Image< unsigned char , 2 > ImageType; typedef itk::ImageFileReader< ImageType > ReaderType; typedef itk::MedianImageFilter<ImageType,ImageType> FilterType; typedef itk::ImageFileWriter< ImageType > WriterType; ReaderType::Pointer reader = ReaderType::New(); FilterType::Pointer filter = FilterType::New(); = WriterType::New(); WriterType::Pointer writer reader->SetFileName("InputImage.png"); filter->SetInput(reader->GetOutput()); writer->SetInput(filter->GetOutput()); writer->SetFileName("OutputImage.png"); writer->Update();

17

18

SPRS W 6 V/6
MEDICAL IMAGE ANALYSIS, HUMAN MOTION AND BODY

MEASUREMENT

Typical Segmentation Pipeline

preprocessing

original data

filters

feature extraction

segmentation

result presentation

International Summer School Advances in Medical Imaging, Aghlos Nikolaos, Crete, Greece, 24-29 April 2006

19

21

23

1	1
_	4

THE ARISTOTLE UNIVERSITY Thessaloniki, Greece Faculty of Surveying Engineering

25

26

International Summer School **Advances in Medical Imaging**, Aghios Nikolaos, Crete, Greece, 24-29 April 2006 Ivo Wolf German Cancer Research Center Heidelberg, Germany

27

1	Q
_	o

29

THE ARISTOTLE UNIVERSITY
Thessaloniki, Greece
Faculty of Surveying
Engineering

31

32

ISPRS WG V/6
MEDICAL INACE ANALYSIS, HUMAN MOTION AND BODY
MEASUREMENT

Example

CT liver, arterial phase

CT liver, venous phase

before registration

To Wolf
German Cancer Research Center
Heideberg, Germany

CT liver, venous phase

after registration

33

34

ISPRS WG V/6
MEDICAL IMAGE ANALYSIS, HUMAN MOTION AND BODY

MEASUREMENT

Measuring Overlap: Similarity Metric
image 1
(fixed image F) $E(F, T_0(M)) = x$ $E(F, T_1(M)) = \min_{F \in \mathcal{F}} F(F, T_1(M)) =$

35

Similarity Metric		
☐ Quantitative measure of a "good	I match"	
☐ Focus on intensity based meas	ıres	
Transformation		
☐ Allowable mapping from one im	age to another	
□ Rigid versus non-rigid		
Optimizer		
□ Optimize transform parameters	w.r.t. Similarity Metric	
Image interpolation method		
☐ Value of image at non-grid position	ion	

36

37

THE ARISTOTLE UNIVERSITY

Thessaloniki, Greece
Faculty of Surveying
Engineering

39

41

42

43

45

1SPAS WG V/6
MEDICAL IMAGE ANALYSIS, HUMAN MOTION AND BODY

German Cancer Research Center
Heideberg, Germany

ACTION
MEASUREMENT

Optimizers

ACTION

47

49

50

51

53

54

55

56

International Summer School **Advances in Medical Imaging**, Aghios Nikolaos, Crete, Greece, 24-29 April 2006

57

58

ISPRS WG V/6
MEDICAL IMAGE ANALYSIS, HUMAN MOTION AND BODY

Why yet another toolkit?

Something about history ...
~1999, we started to use VTK ...
... and got nice visualizations

ARION —
Augmented
Reality for IntraOperative
Navigation

59

60

Why yet another toolkit?

Something about history ...

The same was true for other projects ...

How to get that integrated?

... without doing it for every project again and again?

THE ARISTOTLE UNIVERSITY
Thessaloniki, Greece
Faculty of Surveying
Engineering

MEDICAL IMAGE ANALYSIS, HUMAN MOTION AND BODY MEASUREMENT

61

62

ISPRS WG V/6

MEDICAL IMAGE ANALYSIS, HUMAN MOTION AND BODY MEASUREMENT

63

65

67

69

70

73

74

ISPRS WG V/6
MEDICAL IMAGE ANALYSIS, HUMAN MOTION AND BODY

Rendering-Controllers

What is displayed in a view?

Content is defined by the data tree

But from which side, which slice?

For 3D views:
vtkCamera

For 2D views:
according to
geometry frame!

ISPRS WG V/6

MEDICAL IMAGE ANALYSIS, HUMAN MOTION AND BODY MEASUREMENT

75

76

Sliced Geometry Frames

Sub-classes describe data composed of slices according to their internal organization.

77

79

80

81

83

84

ISPRS WG V/6
MEDICAL IMAGE ANALYSIS, HUMAN MOTION AND BODY
MEASUREHENT

Teleconferencing

ISPRS WG V/6

MEDICAL IMAGE ANALYSIS, HUMAN MOTION AND BODY MEASUREMENT

85

ISPRS WG V/6
MEDICAL IMAGE ANALYSIS, HUMAN MOTION AND BODY
MEASUREMENT

Liver Surgery Planning

Suit Reference
Research Center
Heideberg, German

Liver Surgery Planning

Liver Surgery

L

ces in Medical Imaging, Aghios Nik

87

88

ISPRS WG V/6
MEDICAL IPMAGE ANALYSIS, HUMAN MOTION AND BODY
MEASUREMENT

Liver Surgery Planning

Liver Surgery Planning

Liver Fundament

Liver Surgery Planning

Liver Surger

89

90

ISPRS WG V/6
MEDICAL IMAGE ANALYSIS, HUMAN MOTION AND BODY

WWW.mitk.org

Download options:

anonymous cvs

image: anonymous cvs

im

ISPRS WG V/6

THE ARISTOTLE UNIVERSITY Thessaloniki, Greece Faculty of Surveying Engineering

91

MEDICAL IMAGE ANALYSIS, HUMAN MOTION AND BODY MEASUREMENT

isprs	IspRS WG V/6 MEDICAL IMAGE ANALYSIS, HUMAN MOTION AND BODY German Cancer Research Certe MEASUREMENT Heidelberg, German	
N	MITK – Summary	B) (PE-PELOT SAMe constructions
•	 Supports development of interactive systems from the toolkit level 	
	■ → Toolkit, not an application or development environment	
	Re-use of ITK/VTK code and concepts	
	 Coordination of visualizations and interactions 	
	Improved 2D support (compared to basic VTK)	
	 Adds more high-level interaction capabilities 	
	Support for 3D+t data	
	■ Different layers of hidden complexity	
•	Facilitates re-use of high-level modules	

92

International Summer School **Advances in Medical Imaging**, Aghios Nikolaos, Crete, Greece, 24-29 April 2006